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Learning to act to obtain reward and inhibit to avoid punishment is
easier compared with learning the opposite contingencies. This
coupling of action and valence is often thought of as a Pavlovian
bias, although recent research has shown it may also emerge
through instrumental mechanisms. We measured this learning bias
with a rewarded go/no-go task in 60 adults of different ages. Using
computational modeling, we characterized the bias as being in-
strumental. To assess the role of endogenous dopamine (DA) in the
expression of this bias, we quantified DA D1 receptor availability
using positron emission tomography (PET) with the radioligand
[11C]SCH23390. Using principal-component analysis on the binding
potentials in a number of cortical and striatal regions of interest,
we demonstrated that cortical, dorsal striatal, and ventral striatal
areas provide independent sources of variance in DA D1 receptor
availability. Interindividual variation in the dorsal striatal component
was related to the strength of the instrumental bias during learning.
These data suggest at least three anatomical sources of variance in
DA D1 receptor availability separable using PET in humans, and we
provide evidence that human dorsal striatal DA D1 receptors are
involved in the modulation of instrumental learning biases.

decision making | dopamine | Pavlovian bias | instrumental learning |
positron emission tomography

Instrumental learning occurs through responding to the envi-
ronment in ways that lead to rewards, and avoiding responding

in ways that lead to punishments (1). Theories of instrumental
learning generally do not take into account whether such a re-
sponse is active or passive and assume that action (go and no-go)
and valence (win or lose) are independent. However, empirical
studies of human learning have systematically shown that in-
strumental responding is biased: Learning to act to reap a reward
and not to act to avoid punishment [“go to win” (GW) and “no-
go to avoid losing” (NGL)] is easier than learning inaction to
gain a reward and action to avoid punishment [“no-go to win”
(NGW) and “go to avoid losing” (GL)] (2–8).
Such biases (often conceived of as Pavlovian biases in nature)

facilitate learning in many real-world contexts but can be detri-
mental in situations where action and valence are not coupled
congruently (2, 4, 5, 9, 10). Given the robustness of the findings
demonstrating the existence of this bias, any account of in-
strumental learning that does not consider it will necessarily be
incomplete. In turn, studying the mechanisms leading to this bias
is crucial to enrich our understanding of instrumental learning.
One obvious source of these biases may be sought in the func-

tional architecture of the basal ganglia and its dopaminergic mod-
ulation (11). A widely accepted computational framework posits
that dopamine (DA) conveys reward prediction error signals (12,
13) with phasic bursts signaling better than expected events (also
called positive prediction errors) and dips below baseline signaling
worse than expected events (also called negative prediction errors)
(14). In the striatum, increases in DA are thought to reinforce the
direct pathway (expressing DA D1 receptors) and promote those

actions associated with dopaminergic bursts, while dips in DA are
thought to reinforce the indirect pathway (expressing DA D2 re-
ceptors) and discourage actions associated with the dopaminergic
dips (11, 15). Hence, within this framework, rewards promote ac-
tion and punishment promotes inhibition, coupling action and
valence and naturally leading to biases in action learning.
Although this framework is robustly supported by results from

animal experiments (16–19), corresponding evidence in humans is
mainly limited to studies of genetic polymorphisms and pharmaco-
logical manipulations (7, 20–24). Only one previous study has
assessed the relationship between DA receptor availability and pre-
dictions derived from this framework using a simple learning para-
digm in a small sample (25). If this theoretical framework is correct,
one would predict that the extent to which individuals are biased in
coupling action and valence can be predicted based on measures of
DA receptor availability in striatum. In support of this line of rea-
soning, Richter et al. (7) found that this kind of bias was stronger in
those individuals with genetic variants linked to DA D2 receptor
expression in striatum (17). However, it remains unknown whether
the behavioral biases coupling action and valence are related to direct
measures of endogenous DA function such as receptor availability.
The biases that arise because of a coupling of action and va-

lence have generally been conceived as Pavlovian in nature (2, 4,
5), but a recent study has shown that instrumental mechanisms
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also play a role (8). A Pavlovian mechanism reflects an effect of
anticipated valence on action selection and is likely to be asso-
ciated with the anticipatory phase of reward prediction errors.
Instrumental mechanisms, on the other hand, reflect an asym-
metric impact of positive and negative prediction errors on
learning the value of action and inhibition during outcome
processing. Both Pavlovian and instrumental mechanisms could
in principle arise through the interaction of the functional ar-
chitecture of the striatum and its dopaminergic modulation dis-
cussed above. However, it is currently unknown whether this is
the case, and therefore it is of interest to decompose the bias in
its Pavlovian and instrumental components when studying its
relation to direct measures of endogenous DA function.
Aside from this striatal modulation, DA also plays a role in

facilitating working memory and attentional processes in pre-
frontal cortex (PFC) and parietal cortex (26–28). Although the
striatal workings of DA would predict an increase in the bias that
couples action with valence as highlighted above, boosting the DA
system with L-DOPA has previously resulted in a decrease of such
a bias (6). This effect is consistent with the thesis that DA in PFC
facilitates attentional mechanisms that can help in overcoming the
effects of action/valence-dependent biases on learning (27). In line
with this assertion, Cavanagh et al. (2) observed increased frontal
theta with EEG in those individuals who performed better under
Pavlovian conflicts (i.e., situations where action and valence are
not congruently coupled). Therefore, it is unclear whether the
effects of DA on these biases are regionally specific.
To investigate how DA availability modulates the behavioral

expression of this bias and the anatomical locus of this modula-
tion, we collected behavioral data from 30 younger and 30 older
participants on a probabilistic monetary go/no-go (GNG) task (4),
where participants were required to learn the correct action–
valence contingencies. We used computational modeling to test
different parameterizations (i.e., Pavlovian and instrumental) of
the effect of this bias on each subject’s behavior. We also collected
positron emission tomography (PET) data with [11C]SCH23390,
quantifying D1 DA binding potentials (BPND) as a measure of DA
D1 receptor availability in cortical and striatal regions of interest
(ROIs). We performed principal-component analysis (PCA) on
the BPND values in these ROIs to extract independent sources of
variance in DA D1 receptor availability across the brain.
Although previous research does not show any age differences

in the strength of action/valence-dependent biases, the inclusion of
older participants increases the variance in DA D1 availability and
the power to detect a relationship between DAD1 availability and
action/valence-dependent learning bias. The functional anatomy
of the dopaminergic system allows for two independent, not mu-
tually exclusive predictions: (i) In accordance with the striatal
direct/indirect pathway model of instrumental learning, the in-
terindividual variation in striatal DA D1 receptor availability
would be positively related to the extent to which individuals ex-
press a action/valence-dependent bias during learning; and (ii) in
accordance with the role of cortical DA functions in overcoming
such a bias, cortical DA would be negatively related to the extent
to which individuals express this bias.

Results
Behavior. A 2 × 2 × 2 ANOVA with action (go/no-go), valence
(win/avoid losing), and age group (younger/older) on the
56 participants who completed the task (Materials and Methods)
detected a main effect of action [F(1,54) = 5.84, P = 0.02] and a
main effect of age group [F(1,54) = 21.7, P < 0.001], but no action
by valence interaction [F(1,54) = 2.1, P = 0.15] and no significant
main effect of valence [F(1,54) = 0.01, P = 0.92]. We also found an
action by valence by age group effect [F(1,54) = 7.25, P = 0.01],
which was driven by a lack of significant action by valence in-
teraction in the older participants [F(1,27) = 0.42, P = 0.52], but a
significant action by valence interaction in the young [F(1,27) =

15.55, P < 0.001]. This is a surprising result, because a previous
study comparing younger and older adults on this task demon-
strated an action by valence interaction in both groups of par-
ticipants (3). Furthermore, we observed lower performance
across conditions in our sample compared with the performance
typically observed in this task (3, 7).
We reasoned that these findings could be related to some

participants performing the task at chance and only contributing
noise to the data. To obtain a blind exclusion criteria, we per-
formed a 2-means clustering analysis on the performance during
the last 15 trials of the GW condition. GW has previously been
shown to be the easiest condition to learn in this task, with
participants of all ages consistently performing well in the last
15 trials (3, 7). This analysis detected two groups within the
sample. A total of 41 participants (17 old, 24 young), who we will
refer to as the “good performers,” showed high levels of per-
formance on the last 15 trials for the GW conditions [mean (M)
(GW) = 89%]. A total of 15 participants (11 old, 4 young), who
we will refer to as the “bad performers,” showed low levels of
performance on the last 15 trials for the GW condition, as well as
low levels of accuracy for all other task conditions [M(GW) =
54%, M(GL) = 63%, M(NGW) = 47%, M(NGL) = 49%] that
did not differ from chance level (50%; P > 0.16), with the ex-
ception of the GL condition (P < 0.001).
An overview of the task conditions and the proportion of cor-

rect trials on each condition for all good performers are displayed
in Fig. 1 A and B. The 2 × 2 × 2 ANOVA with action (go/no-go),
valence (win/avoid losing), and group (younger/older) on the
41 good performers only detected a main effect of action [F(1,40) =
43.3, P < 0.001] and an action by valence interaction [F(1,40) =
20.9, P < 0.001] without a significant main effect of valence
[F(1,40) = 0.18, P = 0.67]. We again found an action by valence by
group effect [F(1,40) = 6.59, P = 0.01], which was driven by a lack of
significant action by valence interaction in the older participants
[F(1,16) = 1.73, P = 0.21]. Despite the lack of significant interaction
in the older participants, we observed a positive interaction term
in 14 of the 17 older participants (range, −0.36–0.56), showing that
the effect of interest was present in most of the participants. For
completeness, 20 of 24 younger participants showed a positive
interaction (range, −0.27–0.96).

Computational Modeling of Task Performance. We assessed a col-
lection of models in their ability to account for the observed be-
havioral data. Based on previous studies (2, 6), the base model
included a Rescorla–Wagner Q-learning rule to update the values
of go and no-go choices, separate model parameters for sensitivity
to rewards and punishments, as well as a learning rate, an irre-
ducible noise parameter, and a constant go bias parameter (Ma-
terials and Methods). An additional set of parameters were added
to the models, and models were compared using the integrated
Bayesian information criterion (iBIC), where small iBIC values
indicate a model that fits the data better after penalizing for the
number of parameters. Comparing iBIC values is akin to a like-
lihood ratio test (29). The different models were compared, and
their iBIC scores are presented in Table 1. The winning model
included an instrumental learning bonus κ, which modulated
participants’ learning rates depending on the outcome of the trial.
Contrary to the previous report by Swart et al. (8), model evidence
suggested that learning rate was boosted by κ on rewarded go trials
but was not decreased by κ on punished no-go trials. Adding a
Pavlovian bias parameter to the winning model did not improve
model fit further. To our surprise, model comparison does not
provide strong evidence for the addition of a Pavlovian bias to a
model with separate sensitivities to rewards and punishments
(model 1 versus model 2). This model has previously provided the
most parsimonious account of data on this task (2, 6).
The descriptive statistics for the parameters of the winning

model are summarized in Table 2. When comparing the model
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parameters between age groups with independent-sample t tests
or Mann–Whitney U tests, differences between three out of six
parameters could be observed: ρlose, «, and ξ (Table 2). Simu-
lations for the winning model are presented in Fig. 1C.
To assess the models further, we calculated pseudo-R2 for

each model. The pseudo-R2 is a value that describes how much
more variability a model can account for in each participant
compared with a baseline model reflecting chance decisions, that
is, assuming an equal probability of choosing go and no-go for
each choice. Inspection of pseudo-R2 values for the 17 bad
performers further confirmed that our computational modeling

analysis for these participants was not meaningful—the mean
pseudo-R2 value for this group did not differ significantly from
zero (M = 0.05, SD = 0.11; one-sample t test against zero, P =
0.10). In contrast, the mean individual pseudo-R2 values for
participants included in our sample was 0.33 (one-sample t test
against zero, P < 0.001; Table 1), suggesting that our blind 2-
means clustering separated those participants who performed at
chance level from those participants whose performance was
meaningfully described by the modeling analysis.
Because we have not used the current model in combination

with this task before, we wanted to assess whether behavior on
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Fig. 1. (A) Schematic representation of the rewarded go/no-go task. On each trial, participants were presented with one of four fractals. After a variable
delay of 250–2,000 ms, they were presented with a target circle. A “go”was counted as a button press on the same side as the target within 1,500 ms of target
presentation. After another delay of 1,500 ms, participants were presented with 80/20 probabilistic feedback. (B) Performance on each trial type. All par-
ticipants are presented as individual data points in gray. The 95% confidence interval around the mean on each condition is presented in blue color. (C) Model
parameters of the winning model were used to generate simulated choice data. The simulated group mean probability of performing a go on each trial is
plotted in colored lines (green for go conditions, where go is the correct response; red for no-go conditions, where no-go is the correct response). The group
mean for participants’ actual performance is plotted in black lines, reflecting the proportion of actual go responses on each trial. In the plot area, each row
represents one participant’s choice behavior. Forty-five pixels, one per trial, make up each row. A white pixel reflects that a participant chose go on that trial;
a gray pixel represents no-go.

Table 1. Model comparison for the six models that were used to account for the
behavioral data

Model no. Model parameters No. of parameters Likelihood Pseudo-R2 iBIC

1 «, ρwin, ρlose, ξ, b 5 −3,484 0.32 7,057
2 «, ρwin, ρlose, ξ, b, π 6 −3,472 0.32 7,051
3 e, ρwin, ρlose, ξ, b, κrewarded go 6 −3,444 0.33 6,996
4 «, ρwin, ρlose, ξ, b, κrewarded go/punished no-go 6 −3,464 0.32 7,042
5 «, ρwin, ρlose, ξ, b,π, κrewarded go 7 −3,446 0.33 7,016
6 «, ρwin, ρlose, ξ, b, π, κrewarded go/punished no-go 7 −3,482 0.32 7,089

The winning model statistics are presented in boldface type. Parameters: «, learning rate; ρwin, weighting of
reward on win trials; ρlose, weighting of punishments on lose trials; b, go bias; π, Pavlovian bias; ξ, irreducible
noise; κ, instrumental learning bias. iBIC, integrated Bayesian information criterion.

de Boer et al. PNAS | January 2, 2019 | vol. 116 | no. 1 | 263

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
25

, 2
02

1 



www.manaraa.com

this task can be ascribed to an instrumental, rather than a Pav-
lovian bias, on all instances of the task. We hypothesized that the
reason we have not found a Pavlovian parameter in the winning
computational model could be related to our task version con-
taining 15 fewer trials per condition than the version reported in
previous publications (3, 6). This hypothesis is supported by the
logic that, as opposed to an instrumental learning bias, a Pavlovian
bias promoting approach or avoidance responses to a cue can only
emerge when a cue carries some anticipated value for the agent
(30). This anticipated value arises through learning, which will
invariably take time. To test this hypothesis, we revisited an
available previously published dataset that included 47 younger
[18–30 y old (4)] and 42 older participants [64–75 y old (3)] who
performed 60 trials in each condition instead of 45 trials. The task
was otherwise identical to the one described here. To investigate
whether the length of the task affected the manifestation of a
Pavlovian bias, we used the same computational modeling routine
as the one described above for the current dataset.
This analysis demonstrated that, in this longer version of the

task, the model with both instrumental bias parameter κ and
Pavlovian bias parameter π described the data best (model 6, SI
Appendix, Fig. S1 and Table S1). To further test the hypothesis
that the Pavlovian bias emerges over time, we built two linear
regression models where we predicted performance on the NGW
condition in the first 15 and last 15 trials, respectively, using both
κ and π as predictors. Performance on the last 15 trials was
significantly better than the first 15 NGW trials of the task
(Mfirst = 0.42, SD = 0.27; Mlast = 0.67, SD = 0.40; paired t test,
t = 5.00; P < 0.001). The linear regression analysis showed that κ
(but not π) was a significant predictor of performance in the first
15 NGW trials (βκ = −0.084, P = 0.011; βπ = −0.090, P = 0.224,
model P = 0.028) and π (but not κ) was a significant predictor of
performance in the last 15 NGW trials of the task (βπ = 0.545,
P < 0.001; βκ = −0.073, P = 0.094, model P < 0.001).

Relationship Between DA D1 Receptor Availability and Behavioral
Bias. Note that [11C]SCH23390 binds to all D1-like receptors,
which includes D1 and D5 receptor subtypes. We will refer to
these as D1 receptors throughout this paper. We calculated
BPND values, a measure of DA D1 receptor availability, in the
ROIs we selected for analysis. An overview of selected ROIs
overlaid on a typical participant’s T1-weighted image and PET
image is presented in SI Appendix, Fig. S2. The time–activity
curves (TACs) and BPND values for young and old participants
are presented in SI Appendix, Fig. S3. We first investigated the
relationship between the adjusted BPND values (age-corrected;
see Materials and Methods for details) and four measures of the
behavioral bias coupling action and valence: the model param-
eter κ, performance on the NGW condition, general bias (in-
teraction score), and the effect of the bias on win trials only
(Table 3). As shown in the table, the direction of the correlations
between our measures of bias and BPND values are positive (and
its strength similar; r = 0.26–0.52) across all considered ROIs,
but it only reaches significance in caudate, putamen, dorsolateral

PFC (dlPFC)/ventrolateral PFC (vlPFC), and medial orbito-
frontal cortex (mOFC)/lateral orbitofrontal cortex (lOFC). Be-
cause the BPND values in different ROIs that we considered are
highly correlated (Fig. 2), it is difficult to make inference about
regional specificity of the contributions of different sources of
DA receptor availability to the behavioral bias.
To circumvent this problem, we next decomposed the variance

in BPND values across different ROIs into separate components
using PCA. We entered the adjusted BPND values from all par-
ticipants for whom we had PET data available into a PCA to
extract separate sources of variance, followed by a varimax rota-
tion of the retained components. BPND values in all ROIs were
highly correlated, although cortical ROIs correlated more strongly
with other cortical ROIs than dorsal striatal ROIs and vice versa
(Fig. 2). One eigenvalue above 1 was obtained, but the scree plot
showed two elbows: one after the first, and one after the third
eigenvalue. To determine the greatest change in slope between the
eigenvalues in the scree plot and decide which components should
be retained, we used the Catell–Nelson–Gorsuch (Cng) test (31–
33). This test showed that the maximum change in slope between
eigenvalues happened after the third eigenvalue. Therefore, we
retained three components for further analysis. The total variance
explained in this three-component solution was 92.6%. The same
PCA solution was obtained when no age correction was performed
on the BPND values (SI Appendix, Table S2).
In the three-component solution, all cortical ROIs loaded

strongly on the first component. The dorsal striatum (caudate
and putamen) loaded strongly on the second component, and the
nucleus accumbens (NAcc) loaded exclusively on the third
component (Table 4). Importantly, we confirmed this PCA so-
lution in another, independently collected, dataset with the same
radiotracer and including BPND values for several ROIs in
20 younger and 20 older participants (34). Because the BPND
values of the exact same ROIs were not available, we selected
equivalent ROIs and performed the same PCA on this in-
dependent sample. The general separation of variance into
cortical, striatal, and ventral striatal components remained de-
spite the fact that the exact same ROIs were not used in this
analysis (SI Appendix, Fig. S4 and Table S3).
To investigate the relationship between variability in DA

D1 receptor availability within these components and distinct
measures of behavioral bias on the go/no-go task, we calculated
individual’s PCA component scores for each identified compo-
nent. Based on previous findings, we hypothesized that (i)
component scores reflecting striatal DA D1 receptor availability
would be related to an increased bias coupling action and va-
lence in learning and/or that (ii) such a bias would be less pro-
nounced in individuals with component scores reflecting greater
cortical DA D1 receptor availability.
As predicted, we found positive relationships between all

measures of the bias in learning and component scores on the
dorsal striatal component (component 2, Fig. 3). We did not
observe any relationship between measures of behavioral bias
and the cortical component (component 1) or the ventral striatal

Table 2. Summary statistics for the parameters in the winning model

Parameter Mean SD Min Q0.25 Median Q0.75 Max Mean old Mean young P value difference old/young

ρwin 16.77 10.34 3.21 9.42 13.98 21.45 56.91 18.13 15.81 0.610
ρlose 7.17 5.42 1.51 2.59 6.22 10.18 23.58 3.95 9.46 <0.001
« 0.09 0.08 0.01 0.04 0.06 0.11 0.31 0.06 0.12 0.001
ξ 0.89 0.10 0.59 0.88 0.92 0.94 0.97 0.85 0.91 0.006
κ 0.15 0.98 −1.55 −0.60 0.18 1.11 1.97 −0.08 0.32 0.214
b 0.76 0.71 −0.52 0.27 0.77 1.12 3.01 0.90 0.66 0.610

Parameters: ρwin, weighting of reward on win trials; ρlose, weighting of punishments on lose trials; «, learning rate; ξ, irreducible
noise; b, go bias; κ, instrumental learning bonus.
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component (component 3). Statistics for the correlations be-
tween all components and measures of behavioral bias are dis-
played in Table 5. These results were not dependent on the
exclusion of the participants who performed the task at chance
level (SI Appendix, Table S4). Significant correlations survived
age correction at P(adjusted) < 0.05.
Statistics for the old and young sample separately are pre-

sented in SI Appendix, Table S5. These results demonstrate that
the same correlations can be observed when considering only
young or only old individuals in this sample.

Discussion
We investigated the relationship between DA D1 receptor
availability and well-established behavioral biases during learn-
ing. Consistent with previous literature, healthy participants were
better at learning to emit a behavioral response in anticipation of
reward, and better at withholding a response in anticipation of
punishment. Using computational modeling, we characterized
this tendency as an instrumental learning bias. Despite strong
associations in DA D1 receptor availability among the targeted
ROIs, we could distinguish distinct sources of variance in corti-
cal, dorsal striatal, and ventral striatal DA D1 receptor avail-
ability using PCA. Critically, we showed that variability in dorsal
striatal DA D1 receptor availability, independent of age, was
related to a range of behavioral measures reflecting the strength
of learning biases coupling action with valence, including a
quantification of the specific instrumental learning bias.
The functional architecture of the striatum and its dopami-

nergic modulation has been hypothesized to underlie the be-
havioral biases studied here. This modulation can occur at two
different time points. On the one hand, DA can influence
learning at the time of reward receipt, biasing instrumental
learning by reinforcing those actions that lead to reward, and
inhibiting those that lead to punishment, through the direct and
indirect pathways expressing D1 and D2 receptors, respectively
(11, 16, 35). Therefore, increased DA D1 receptor availability in
striatum may reflect a more sensitive reinforcement mechanism
in the direct pathway resulting in a stronger link between the
most recently performed active choices and received reward. On
the other hand, DA can modulate action selection at the time of
choice when anticipation of reward or punishment elicited by
cues promote approach and invigoration or withdrawal and in-
hibition, respectively (4, 36, 37). Such a cue-induced bias is
commonly referred to as Pavlovian and is widely studied in an-
imals (38, 39) but has also been demonstrated in humans using
Pavlovian-instrumental transfer (PIT) paradigms (40–42). In PIT
experiments, stimuli that are associated with rewards or pun-
ishments enhance the motivational response to those stimuli,
even when that enhancement does not directly benefit the out-
come of the action, because the testing is conducted during ex-
tinction (39). DA is an important modulator of appetitive PIT
(43–45). Therefore, increased D1 receptor availability in the
striatum may imply a lower threshold for active choices in re-
sponse to rewarding cues.
Although our task was not designed for this purpose, we could

disentangle these two independent sources of biases (instrumental

and Pavlovian) by fitting a range of behavioral models to the data
(8). This analysis demonstrated that results were best explained by
a model that included a parameter influencing the learning rate of
the participants depending on the action/outcome contingency on
each trial. Such a mechanism reflects an instrumental learning
bias, boosting positive reward prediction errors after go choices.
The instrumental learning bias described the data best when it
only modulated the learning rate on rewarded go trials and not on
punished no-go trials. This asymmetry did not cause the model to
overshoot in its predictions of the proportion of go responses to
reward-predicting stimuli (Fig. 1C). This may appear as contra-
dictory to the study by Swart et al. (8) showing boosted rein-
forcement of rewarded go choices and dampened reinforcement of
punished no-go choices. However, the behavioral biases observed
with the present task is historically stronger for appetitive trials
compared with aversive trials (2–4, 6, 7, 40, 46). This is interesting
in light of a recent study on aversive learning showing a bias on the
aversive domain depending on whether the choice involved escape
or avoidance (46). Escape choices in response to aversive envi-
ronments are more easily learned to be active (rather than in-
active). The difference in the ease with which a response is learned
is magnified for such escape choices compared with choices that
lead to the avoidance of an aversive outcome. Thus, to observe
similarly strong behavioral bias effects on aversive trials, escape
trials may need to be added to the experimental paradigm.
Consistent with the role of DA in reinforcement learning, DA

D1 receptor availability in dorsal striatum positively correlated
with the strength of learning rate modulation on rewarded go

Table 3. Correlation coefficients for bivariate correlations between age-corrected BPND values in different ROIs and
measures of the behavioral bias coupling action and valence

Measure of behavioral bias Caudate Putamen NAcc BAs 44, 45, 46, 9 lOFC/vmPFC BAs 4, 6 IPL

Instrumental parameter κ 0.48** 0.52*** 0.26 0.43** 0.39* 0.28’ 0.34*
No-go to win, % correct −0.40* −0.46** −0.26 −0.40* −0.27’ −0.19 −0.24
Behavioral effect on win trials 0.37* 0.43** 0.20 0.34* 0.18 0.13 0.19
Interaction score 0.30’ 0.44** 0.09 0.32* 0.15 0.14 0.23

‘P < 0.1, *P < 0.05, **P < 0.01, and ***P < 0.001.

Fig. 2. Correlation matrix that shows the correlations between age-
corrected BPND values in the ROIs selected for analysis.
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trials. The modeling analysis also demonstrated that no additional
variance in choice behavior could be explained with the inclusion
of a Pavlovian bias parameter, which would promote an approach/
avoidance reaction to the cue at onset depending on the expected
value of the condition on a given trial. Thus, the bias studied in the
current experiment is more accurately described as an instru-
mental bias than a Pavlovian bias, and the strength of this in-
strumental bias is predicted by DA D1 receptor availability in
dorsal striatum. The dorsal striatum has previously been shown to
be an integral part of the decision-making circuit (47, 48) and a
major target for substantia nigra DA neurons. Specifically, the
dorsal striatum is involved in learning about actions and their
reward consequences (49), whereas the ventral striatum (VS) is
thought to be more involved in passive forms of appetitive
learning [refs. 50 and 51, but see also Guitart-Masip et al. (52)].
This involvement of the dorsal striatum in action-dependent
learning is in line with the findings presented here and suggests
that dopaminergic modulation during learning biases the learning
from rewarded actions as opposed to rewarded inactions.
Despite the winning model in this experiment only including

an instrumental learning bias, we would not argue that choice
behavior in this task is not affected by a Pavlovian bias for several
reasons. First, Swart et al. (8) performed an experiment designed
to computationally disentangle a cue-evoked Pavlovian bias from
an instrumental bias in learning from reinforcements at feedback
and found that both instrumental and Pavlovian mechanisms
played a role. Second, the task in this study was shorter than
reported elsewhere (2–4, 6), and reanalysis of one of these
datasets (3) demonstrates that both an instrumental learning bias
and a Pavlovian bias emerge in the longer version of the task, in
agreement with findings reported by Swart et al. (8). Further-
more, in this longer dataset, the individually fitted instrumental
learning parameter was a predictor of “no-go to win” perfor-
mance early on during the task, but not toward the end. Con-
versely, the Pavlovian parameter was a predictor of “no-go to
win” performance toward the end of the task, but not early on.
This provides additional evidence for the view that, in our task,
instrumental learning biases affect performance mostly during
the learning phase, and Pavlovian biases affect performance
mostly after learning has occurred.
Although our computational models accurately described be-

havior observed in this task, we need to acknowledge that our
modeling approach does not exhaustively test every possible
mechanism by which reward-induced behavioral activation may
result in behavioral biases. Whereas we considered and param-
eterized a Pavlovian mechanism by which valence is coupled to
action, alternative non-Pavlovian mechanisms are conceivable.
In animal studies, the presentation of rewards results in in-
creased general behavioral output including those behaviors that
may eventually lead to reward obtainment (53). Theoretical
models demonstrate that learning mechanisms by which stimuli

and actions become associated with rewards are dissociable from
the general arousing effects of reinforcers leading to undirected
increases in behavioral output (54). Because of their indepen-
dence, it is beyond the scope and hypothesis of this paper to
consider general behavioral activation mechanisms.
Measures of instrumental bias correlated strongly with DA D1

receptor availability in the different ROIs we selected. Because
BPs are highly correlated across ROIs, it was initially unclear
whether these different correlations were masking specific rela-
tionships between local DA D1 receptor availability and behavior.
With PCA, we could disentangle distinct sources of variance in DA
D1 receptor availability. A priori, different PCA solutions were
conceivable. We could have found a solution implying a single
source of variance across the brain for D1-type receptors. Alter-
natively, based on the connectivity of the different regions, one
could hypothesize a topographical organization whereby motor,
associative, and limbic areas of the brain (26, 55) would provide
independent source of variance. Finally, based on the ontology of
brain development (56), one could hypothesize an anatomical or-
ganization with distinct cortical and subcortical sources of variance
as the one we found. This is in line with a previous study looking at
D2 receptors (57). In the case of D1 receptors, this distinction
could also stem from the types of neurons on which these receptors
are typically expressed in different brain areas. In the cortex, both
D1 and D5 receptors are expressed on pyramidal cells, whereas in the
striatum D1 receptors are expressed on medium spiny neurons and
D5 receptors are expressed on tonically active neurons (58). The
dorsal versus ventral striatum division was less expected. However,
there is abundant evidence suggesting that the shell of the NAcc and
related ventral striatal regions may have different neurochemical
properties compared with the rest of the striatum (15, 26, 59).
In contrast with the suggestion that cortical DA may help

overcome learning biases that couple action with valence (6), we
did not find any evidence that endogenous DA D1 receptor
availability in the cortex is negatively related to the strength
of the Pavlovian or instrumental bias. One explanation for the

Table 4. Component loadings for each ROI

Region of interest Component 1 Component 2 Component 3

Caudate 0.39 0.88 0.18
Putamen 0.32 0.85 0.34
NAcc 0.24 0.26 0.93
dlPFC/vlPFC: BAs 9,

44, 45, 46
0.80 0.48 0.22

Limbic PFC: lateral/
medial OFC

0.72 0.39 0.45

Premotor PFC: BAs 4, 6 0.92 0.19 0.17
Parietal cortex: IPL 0.79 0.46 0.20

The component that each ROI loaded on most strongly is displayed
in boldface type.
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Fig. 3. Correlations between measures of behavioral bias coupling action
and valence and component scores for component 2 (dorsal striatal DA
D1 receptor availability). Statistics are displayed in Table 5.
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absence of a relationship in our data would be that the effects of
L-DOPA on behavioral bias were mediated by stimulation of
D2 receptors. Alternatively, the effects of L-DOPA on behav-
ioral bias could have been mediated by increased noradrenaline
levels. L-DOPA is the precursor of both DA and noradrenaline,
and, beyond dopaminergic neurons, noradrenergic neurons have
been shown to reuptake L-DOPA (60). Furthermore, previous
studies have demonstrated increased DA and noradrenaline re-
lease in the rat brain after administration of L-DOPA (61, 62).
We corrected for age before performing the PCA on the

D1 receptor BPND values because the number of DA receptors
decreases over the life span (34, 63, 64). Our aim was to in-
vestigate how the variation in different sources of receptor
availability contributed to the bias coupling action with valence,
rather than the overall absolute number of DA receptors, which
is strongly associated with age. By regressing out age, we as-
sumed that the way in which different parts of the brain con-
tribute to the variability in receptor availability does not change
over the life span. Additionally, it ensures that component scores
are not correlated with age. Note that the same PCA on the
uncorrected BPND data yielded a similar solution, supporting the
view that this solution is not affected by the age correction.
Despite this, the inclusion of participants from two different age

groups may be a limitation of this study. Although these age groups
provided increased variability in both behavior and DA D1 re-
ceptor availability, many other factors likely differ between older
and younger individuals. To address this potential limitation, we
regressed out the effects of age in all of our analyses. Furthermore,
to make sure that the correlations between DA D1 receptor
availability and our measures of behavioral bias do not depend on
these uncontrolled factors that covary with age, we assessed these
correlations in each age group separately. We found evidence that
the correlations between the dorsal striatal component of DA D1
receptor availability are observed when the age groups are con-
sidered individually. This control analysis rules out the possibility
that our results depend on potentially uncontrolled factors related
to the inclusion of participants differing in age.
Another limitation of this study is that performance was low

among older participants. Contrary to previous studies (3), the
action by valence interaction could not be found in the older
group. It is possible that this is caused by a difficulty in un-
derstanding the task instructions for older participants in the
current study. To address this, we blindly clustered the data and
found one cluster of participants performing the task at chance
level. By excluding the participants in this cluster, we isolated
those participants whose behavioral data are meaningful in a
data-driven way. Although we did not find an action by valence
interaction in the older participants at the group level, the ma-
jority showed a positive action by valence interaction.
In conclusion, our study shows that it is possible to disentangle

cortical and striatal sources of variance in DA D1 receptor
availability in humans using PET. We provide evidence that
higher levels of endogenous DA D1 receptor availability in the

human dorsal striatum are related to biases during learning,
namely an instrumental learning bias boosting learning from
rewarded go trials. This finding suggests that a pervasive bias in
instrumental learning stems from the functional architecture of
the striatum and its dopaminergic modulation.

Materials and Methods
Participants. Thirty healthy older adults, aged 66–75 y, and 30 younger adults,
aged 19–32 y, were recruited through local newspaper advertisements in
Umeå, Sweden. The health of all potential participants was assessed before
inclusion through a questionnaire administered by research nurses. The
questionnaire inquired about past and current neurologic or psychiatric
conditions, head trauma, diabetes mellitus, arterial hypertension that re-
quired more than two medications, addiction to alcohol or other drugs, and
bad eyesight. All participants were right-handed and provided written in-
formed consent before commencing the study. Ethical approval was
obtained from the Umeå University Regional Ethical Review Board. Partici-
pants were paid 2,000 Swedish crowns (SEK) (∼$225) for participation and
earned up to 71 additional SEK (∼$8.70) in the GNG task.

We excluded four participants (two older, two younger) who emitted
>30% incorrect responses (i.e., pressing the button on the opposite side of
the target) in any condition. The instructions explicitly stated that this re-
sponse would never be correct, and therefore these participants are believed
to have misinterpreted or failed to understand the instructions. One older
participant did not complete the full PET scan, but this participant’s be-
havioral data are still included in the analysis where possible. Additionally, a
problem with the injection of the radiotracer in another older participant
resulted in a lack of PET signal. Thus, the data from a total sample of
28 younger and 28 older participants for the behavioral analysis, and
30 younger and 28 older participants for the PET analysis were included.

Procedure. Before recruitment, participants completed a health survey
questionnaire. On site, all participants performed the Mini Mental State
Examination. Scores ranged from 26 to 30 in the young (M = 29.3, SD = 0.88)
and from 27 to 30 in the older sample (M = 29.5, SD = 0.85), with no sig-
nificant difference between age groups (P = 0.46). PET scanning and be-
havioral testing were planned 2 d apart. However, due to a technical
problem with the PET scanner, 12 participants were tested with a longer
delay (range, 4–44 d apart). On the behavioral testing day, participants
completed the GNG learning task and two other tasks inside an MRI scanner.
They also completed a battery of tasks outside the scanner. Only results from
the GNG learning task will be presented here.

Valence Go/No-Go Task. The task was the learning version of a probabilistic
monetary go/no-go paradigm in Swedish, similar to the task first described by
Guitart-Masip et al. (4) (Fig. 1A). The version described here included only
45 trials per condition instead of 60 as reported previously (2–4). Participants
were presented with one of four fractal images on each trial. After a variable
delay, they saw a target in the form of a white ring on the left or right side of
the screen. Participants were told that for each fractal image, the correct re-
sponse could be a “go” (press a button corresponding to the same side as the
target) or a “no-go” (do not press at all). Participants were instructed that
pressing right when the target was on the left or pressing left when the target
was on the right would always be counted as an incorrect response.

The four fractals reflected the four conditions of the task. “Win” condi-
tions resulted in a green arrow pointing upward 80% of the trials after
correct responses, and in a yellow horizontal bar after 80% of incorrect
responses. Win trials either belonged to a Pavlovian congruent condition

Table 5. Correlations coefficients and P values for correlations between all component scores and different indicators of a behavioral
bias that couples action with valence

Component 1 scores correlations Component 2 scores correlations Component 3 scores correlations

Measure of behavioral bias
Correlation
coefficient

Adjusted
P value

Correlation
coefficient

Adjusted
P value

Correlation
coefficient

Adjusted
P value

Instrumental parameter κ 0.167 0.485 0.477 0.005 0.083 0.767
No-go to win performance −0.082 0.769 −0.428 0.011 −0.097 0.726
Behavioral effect on win trials 0.121 0.918 0.432 0.010 0.011 0.867
Interaction score 0.065 0.813 0.418 0.014 −0.091 0.994

Significant correlations are displayed in boldface type.
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(GW, where participants had to respond with a “go” to get a reward) or a Pav-
lovian incongruent condition (NGW, where participants had to omit a response to
get a reward). The same was true for “Lose” trials, which resulted in a neutral
outcome after 80% of trials where participants emitted a correct response,
and a red arrow pointing down after 80% of incorrect responses. In the
Pavlovian congruent condition, participants had to inhibit their response to
avoid losing (NGL). In the Pavlovian-incongruent condition, they had to
perform a “go” to avoid losing (GL). Responses were counted as a valid go if
participants responded within 1,000 ms of being presented with the target.
However, participants were able to respond up to 1,500 ms after the target
was presented. If they responded between 1,000 and 1,500 ms, the response
was counted as a go, but participants saw the words “your response was too
slow” on the screen in Swedish. If the participants did not press the button
for 1,500 ms after the target was presented, it was counted as a no-go.
Participants were presented with feedback after the presentation of a fix-
ation cross for an additional 1,000 ms. Green arrows indicated that partici-
pants added 1 SEK (∼$0.11) to their running total, horizontal yellow bars
meant no loss and no gain, and red arrows pointing down indicated a loss of
1 SEK. The running total was paid to the participants in addition to a par-
ticipation allowance for the research project.

Participants were explicitly informed about the probabilistic nature of the task
but were not informed about the action contingencies. As stated above, there
were four trial types, go andno-go towin or avoid losing. Each of these trial types
was represented by a different fractal. Participants had to discover, by trial and
error, which fractal indicated which condition they were in. Fractal–condition
contingencies were randomized between participants. Before performing the
learning task, participants performed 20 trials of the target detection task before
starting the learning task, to familiarize them with the timing and manner of
responding during target detection. After practicing the target detection task,
participants performed 45 trials in each of the four task conditions, totaling
180 trials. Trials types were randomly shuffled throughout the duration of the
tasks. Participants took a self-paced break every 60 trials, which resulted in their
performing three blocks of ∼7 min with breaks in between.

Behavioral Analysis. Behavioral data were analyzed using R, 3.4.3. The number
of total correct choices per conditionwas analyzed, defined as any response in
line with the task contingencies, even if the go response was performed late
(between 1,000 and 1,500 ms).

We present our behavioral data as we observed it in the 56 participants
who successfully completed the task. However, a close examination of per-
formance in the older group revealed an overall low performance in all
conditions. The low performance in the GW condition (68% correct) is es-
pecially surprising considering that this is the easiest condition to learn in this
task with performance typically around or over 80% and higher in both
younger and older adults (2–4, 6, 7). Because performance was so low, we
performed the same analyses that we present in Results on a sample of good
performers, in which performance levels were more comparable to those
previously reported. We selected good performers according to the fol-
lowing procedure: We performed a 2-means clustering analysis on the per-
formance during the last 15 trials of the GW condition.

To investigate the bias coupling action with valence, the proportion of
correct responses was entered into a 2 × 2 ANOVAwith action and valence as
factors with two levels (go/no-go and win/lose, respectively). To quantify the
bias and study its relationship with D1 receptor availability measures, we
calculated the overall interaction, reflecting the bias effect on the four
conditions (GW + NGL – GL – NGW) and the bias effect on “win” conditions
(GW – NGW). Because NGW is the most difficult condition to learn in this
task, we took performance on this condition as another indicator of the
strength of the bias that couples action with valence.

Computational Modeling. Behavior al data were modeled in MATLAB
(Mathworks), similar to Guitart-Masip et al. (4) and Cavanagh et al. (2). We
built six parametrized reinforcement learning models to fit participant’s
behavior (Table 1). These models assigned an action probability for each
available action a on each trial t.

Action probabilities depended on an action weight W(at, st), which was
tracked for each action (a), go or no go, and each state (s) determined by the
stimulus on that trial (t). The action weights were constructed differently in
different models. We added different parameters in a stepwise way. For all
models, action weights were passed through a squashed softmax (1):

Pðat ,   stÞ=
"

exp½Wðat , stÞ�P
a’ exp½Wða’, stÞ�

#
ð1− ξÞ+ ξ

2
,

where ξ reflected the irreducible noise in the decision rule.

Action weights differed depending on which model was used. All models
included the value Q of each action as determined by a Rescorla–Wagner
updating rule:

Qtðat , stÞ=Qt−1ðat , stÞ+ «ðρrt −Qt−1ðat , stÞÞ.

All models included a learning rate «. Rewards, neutral outcomes, and
punishments were entered in the model through r E {−1,0,1}. ρ reflected
weighting of reward and punishment, determining the effective size of the
reward or punishment. In all models, ρ could take on separate values for
rewards and punishments, assuming that forgoing a reward could be more
or less aversive than obtaining a punishment. Adding separate sensitivities
for rewards and punishments has previously been shown to consistently
improve model fit (2, 6).

All models also included an individually fitted static bias parameter b that
was added to the value of go:

Wtðat , stÞ=
�
Qtðat , stÞ+b                                            if  a=go,
Qtðat , stÞ                                                                              else

In model 2, expected value on the current state [Vt(st)] was weighted by
another individually fitted free parameter π and added to the value of go
choices. Models 2, 5, and 6 therefore included the following action weights
for go and no-go:

Wtðat , stÞ=
�
Qtðat , stÞ+b+ πVtðsÞ          if  a=go,
Qtðat , stÞ                                                                              else

where π ≥ 0.
For models that included a Pavlovian factor, V was computed as follows:

VtðstÞ=Vt−1ðstÞ+ «ðρrt −Vt−1ðstÞÞ.

The Pavlovian parameter coupled action and valence and devalued the value
of go choices in the punishment conditions in proportion to the value of the
stimulus [V(s)], which was negative in these instances. Conversely, the Pav-
lovian parameter boosted the value of go choices in proportion to the
positive value of the stimuli signaling rewarding conditions.

Finally, in line with previous work by Swart et al. (8), we added an in-
strumental learning bonus κ to some models. κ modulated the participants’
learning rate « depending on choice and feedback on a trial. In the study by
Swart et al. (8), the value of this parameter was added to « on trials that
resulted in a rewarded go response, and subtracted from « on trials that
resulted in punished no-go choices. In other trials, « remained unmodulated.

«=

8<
:

«RewardedGo = «0 +   κ
«PunishedNoGo = «0 − κ

«other       = «0

We decided to let κ modulate « in a stepwise manner, because the difference
in learning between rewarded go trials and rewarded no-go trials was larger
than the difference in learning between punished go and punished no-go
trials. Thus, in model 3 (which included ρwin,     ρlose, «, ξ, and κ), κ modulated «

only on rewarded go trials. In model 4 (which included ρwin,     ρlose, «, ξ, and
κ), κ modulated « on rewarded go trials as well as punished no-go trials.
Model 5 included ρwin,     ρlose, «, ξ, π, and κ for rewarded go trials, and model
6 included ρwin,     ρlose, «, ξ, π, and κ on rewarded go trials as well as punished
no-go trials (Table 1).

Model Fitting.Model parameters were fitted using an expectation-maximization
approach (4, 37). We used a Laplacian approximation to obtain maximum a
posteriori estimates for the parameters for each participant iteratively, starting
with flat priors. After an iteration, the resulting group mean posterior and
variance for each parameter were used as priors in the next iteration. This
method prevents the individuals’ parameters from taking on extreme values.

Models were compared using the iBIC calculated as in past work (4, 37).
Small iBIC values indicate a model that fits the data better after penalizing for
the number of parameters. Comparing iBIC values is akin to a likelihood ratio
test. We also calculated a pseudo-R2 value for each participant. The pseudo-R2

value compares the difference between the likelihood under a chance model
and the likelihood of a given model, and divides the difference by the like-
lihood of a chance model. The pseudo-R2 is a measure of how much addi-
tional variance can be explained under a given model compared with chance.

Model parameters were assessed for normality with Shapiro–Wilk tests
and subsequently compared with between-group tests using independent-
sample t tests or Mann–Whitney U tests, depending on the normality of the
parameter’s distribution.
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PET Image Acquisition. PET images were acquired in 3Dmode using a Discovery
690 PET/computed tomography (CT) scanner (General Electric), at the De-
partment of Nuclear Medicine, Norrland’s University Hospital in Umeå, Sweden.
A low-dose helical CT scan (20 mA, 120 kV, 0.8 s/revolution), provided data
for PET attenuation correction. Participants were injected with a bolus of
200 MBq of [11C]SCH23390. A 55-min dynamic acquisition commenced at
time of injection (9 frames × 2 min, 3 frames × 3 min, 3 frames × 4, 20 min,
3 frames × 5 min). Attenuation- and decay-corrected 256 × 256-pixel trans-
axial PET images were reconstructed to a 25-cm field-of-view employing the
Sharp IR algorithm (six iterations, 24 subsets, 3.0-mm Gaussian post filter).
Sharp IR is an advanced version of the OSEM method for improving spatial
resolution, in which detector system responses are included (65). The FWHM
resolution is below 3 mm. The protocol resulted in 47 tomographic slices per
time frame, yielding 0.977 × 0.977 × 3.27-mm3 voxels. Images were decay-
corrected to the start of the scan. Images were deidentified using dicom2usb
(https://dicom-port.se). To minimize head movement during the imaging
session, the patient’s head was fixated with an individually fitted thermo-
plastic mask (Positocasts Thermoplastic; CIVCO Medical Solutions).

PET Analysis. PET data were analyzed in a ROI-based protocol. This type of
analysis requires a priori hypotheses about the regional specificity of do-
paminergic modulation of observed behavioral or neuronal effects. All
analyses were done using of in-house developed software (imlook4d, version
3.5; https://dicom-port.se/product/imlook4d/).

ROIs for the ROI analysis were based on the division between limbic, as-
sociative, and motor areas in the striatum, and their corresponding targets in
PFC. Hence, we divided the striatum into NAcc, caudate, and putamen, largely
corresponding to limbic, associative, and motor areas of the striatum. In the
cortex, a limbic ROI comprised ventromedial PFC (vmPFC) and lOFC. Asso-
ciative areas including one ROI that comprised the dlPFC and vlPFC, and one
ROI comprising the inferior parietal lobule (IPL). Brodmann areas (BAs) 4 and
6 were chosen as representative of motor targets in PFC.

These regions were selected based on their relevance to our task: dlPFC has
previously been demonstrated to be involved in executive processes and
working memory and cognitive flexibility (66–68), whereas vlPFC is thought
to be important for goal-directed action and attention (69). vmPFC has been
shown to be responsive to reward magnitude and reward probability in a
large number of studies (70). In addition, vmPFC and OFC are active during
anticipation of rewards (71, 72). Many connections exist between these re-
gions and VS, an important node in the mesolimbic DA system (26, 30, 73).
VS consists of NAcc and parts of the medial caudate nucleus and rostral
putamen. The cerebellum was segmented to be used as reference tissue
because it is devoid of DA D1 receptors (74). FSL’s FIRST algorithm (75) was
used to segment subcortical structures.

ROI BPND values were calculated and presented in a recent publication using
this dataset (71). In brief, to obtain ROI BPND values, the PET time series were first
coregistered to the individual T1-weighted images and ROI images. The average
TACs were extracted across all voxels within each ROI, and binding potential
(BPND) was calculated using applying the Logan method (76) as implemented in
imlook4d. This method was applied to each ROI using the cerebellum as refer-
ence tissue. BP values for all ROIs were averaged across hemispheres.

Statistical Analysis of PET Data. Age was not a direct factor of interest in this
study, but the age variation ensured both variability in DA D1 receptor
availability (63) and performance on the GNG task (3). At the same time, the
combined samples provided enough power to perform PCA on PET BPND. All

analyses were performed in such a way that ensured age was regressed out
or controlled for. To reduce the collinearity between the DA D1 BPND values
and age, which are highly correlated in a wealth of literature (34, 63, 77, 78),
we initially regressed out the effect of age on each BPND value. We used a
similar approach to Raz et al. (79), first computing the β coefficient that
reflected the correlation between age and BPND in each ROI. Then we
regressed out the effect of age by calculating the effect of age on BPND and
correcting for this effect:

BPNDðadjÞðparticipant, ROIÞ=BPNDðparticipant, ROIÞ
+ βageðROIÞ* ageðparticipantÞ.

This procedure is largely similar to performing an analysis on the residuals of BP
after regressing out age. We performed simple bivariate Pearson’s correlations
between these age-corrected BPND values and four different measures of a
behavioral bias that couples action with valence: (i) the instrumental learning
bias parameter, (ii) performance on NGW, (iii) the interaction (GW + NGL −
GL − NGW), and (iv) the effect on no-go trials (NGL − NGW).

The BPND values in different ROIs were highly correlated (r > 0.5; P <
0.001 in all ROIs), but an examination of the correlation matrix suggests that
BPND within cortical ROIs are highly correlated to each other but less so to
subcortical ROIs (Fig. 2). A similar correlation matrix has previously been ob-
served using the same radioligand to measure DA D1 receptor availability (34).
To obtain hypothetically independent sources of variance in DA D1 receptor
availability, we performed a PCA on the age-adjusted BPND data, by first using
PCA to extract principal components and subsequently maximizing the vari-
ance each component accounted for with an orthogonal varimax rotation.
These analyses were performed in R, with the function principal (psych pack-
age). The number of components to retain was determined by performing a
Cng test on the eigenvalues (80), done with the R package nFactors (function
nCng). Cng involves computing the slopes between the eigenvalues in the
scree plot. The point at which the greatest change in slope is observed is the
cutoff point for the number of components (80).

We then performed Pearson’s correlations between participants’ component
scores on each component obtained in the PCA and behavioral measures de-
scribed above. To correct for multiple comparisons for correlations between
measures of behavioral biases and component loadings, we performed
10,000 permutations where we shuffled the values of the four measures of
behavioral biases within participants and correlated these shuffled columns
with the DA component loadings. The maximum t statistic from the four cor-
relations in each iteration (four columns with shuffled values) was saved and
added to the null distribution. This created null distributions that take into
account the correlations between the measures of behavioral bias. Correlations
in the data with an absolute t statistic that exceeded the absolute t statistic at
the 95th percentile of this new null distribution were considered significant.
Adjusted P values were calculated by counting the number of t values in the
new null distribution that exceeded the observed t value, divided by 10,000.
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